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We derive the second-order variation in the local static stress intensity factor of a tensile crack with a curved
front. We then discuss the relevance of this result to the stability analysis of such fronts, and propose an
equation of motion of planar crack fronts in heterogeneous media that contains two main ingredients—
irreversibility of the propagation of the crack front and nonlinear effects.
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The propagation of a crack front in a brittle material is the
playground of a number of physical phenomena, which range
from dynamic instabilities of fast moving cracks �1� to qua-
sistatic instabilities of crack paths �2,3�, or of crack fronts
�4–8�. Although the actual theory of brittle fracture mechan-
ics succeeded to explain a number of instabilities, the experi-
mentally observed self-affine roughness of a crack front
propagating through a heterogeneous medium remains the
subject of theoretical debate �5–7�. This phenomenon is of
fundamental importance, because it may be regarded as an
archetype of self-affine patterns induced by advancing fronts.
Wetting of a disordered substrate being another example of
systems with a similar structure �9,10�.

In the framework of linear elastic fracture mechanics, an
important step was performed by Rice �11� following a work
of Meade and Keer �12�. He gave a general formula for the
first-order variation in elastic fields of a planar curved crack
front and subsequent analysis was mainly based on this work
�5,6,13–16�. However, aspects related to crack-front rough-
ness and stability could not be derived within this first-order
perturbation solution. A possible explanation, which has been
suggested in the context of the wetting problem �10�, is that
higher order variations might be necessary for the study of
the stability and roughening properties of these fronts.

This paper aims at the determination of the second-order
variation in elastic fields of a tensile crack front. The present
approach is different from �11� and can be generalized to
higher orders. It uses a methodology introduced in �8� for the
study of the peeling-induced crack-front instability in a con-
fined elastic film. Since the present study is performed in the
framework of linear elastic fracture mechanics, our perturba-
tion analysis is expected to hold as long as the radius of the
curvature of the crack front remains larger than the size of
the process zone where the plastic effects become dominant.

This solution is intended to be used for understanding the
roughening of interfaces whose front dynamics does not be-
long to the Kardar-Parisi-Zhang �KPZ� �17� universality
class. For this purpose, we propose a generalized equation of
motion of the planar crack fronts in heterogeneous media
that includes both the irreversibility of crack-front propaga-
tion and the nonlinear effects.

The problem of a half-plane crack located in the plane

y=0 with a curved front �see Fig. 1� can be solved by using
the linear equations of elasticity. It has been shown �12� that
these equations are satisfied for a tensile loading that is sym-
metric to the crack plane if displacement components
�uy ,ux ,uz� are written as

Euy = − 2�1 − �2�� + �1 + ��y � �/�y , �1�

Eux = �1 + �� � �F + y��/�x , �2�

Euz = �1 + ��y � �F + y��/�z , �3�

where F�x ,y ,z� and ��x ,y ,z� are harmonic functions related
by �F /�y= �1−2���. E is the Young modulus and � is the
Poisson ratio. Consequently, the stress components that enter
the crack-surface boundary conditions are given by

�yy = − ��/�y + y�2�/�y2, �4�

�yx = y�2�/�y � x , �5�

FIG. 1. Schematic of the problem of a half-plane crack on
y=0 in an infinite body. The average penetration of the crack front
in the x direction is L. The straight reference front in the z direction
and the perturbation h�z� around it are also shown.
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�yz = y�2�/�y � z , �6�

which satisfy the shear traction free boundary conditions on
the crack plane. Thus, the problem of loading on the crack
faces is one of finding a function � satisfying

���x,y,z� = 0, �7�

having vanishing derivatives at infinity, and generating stress
� and opening gap �u on y=0 given by

� = − ��/�y�y=0, �u = − �4�1 − �2�/E���y=0+, �8�

respectively. Defining h�z� as the position of the crack front,
we may write the boundary conditions as

��x,0,z� = 0, x � h�z� , �9�

��

�y
�x,0,z� = p�x,z�, x � h�z� , �10�

��

�x
�x,y,z�,

��

�y
�x,y,z� → 0, �x2 + y2� → � , �11�

where p�x ,z� is the normal pressure that loads the crack
faces. The problem cannot be solved explicitly without
specifying p�x ,z�, but it is known from classical fracture
mechanics analysis that solutions to it exhibit characteristic
square-root stress singularities �16�. The harmonic function
� generating such a singularity necessarily has the form
given by

��x,0+,z� � −
2K�z�
�2�

�− X −
4A�z�
3�2�

�− X�3/2, �12�

where X�x−h�z�→0−. The function K�z� is given by

K�z� = KI�z��1 + h�2�z��1/4, �13�

where KI�z� is the local stress intensity factor, which is de-
fined with respect to a coordinates system lying in the plane
perpendicular to the crack front at the location x=h�z� and
extending into the y direction �16�. The second term in Eq.
�12� corresponds to the next order in the expansion of the
stress field in the vicinity of the crack front, which is propor-
tional to �h�z�−x. The parameter A�z� has the dimension of
the stress intensity factor over length.

As a first step, we will consider that K does not depend on
z through the position of the crack front with respect to the x
direction, i.e. K(z ,h�z�)=K�z�. This condition �to be relaxed
later� is of course restrictive, but it will help to construct the
full perturbation analysis. This simplification consists explic-
itly in assuming that a straight crack front will have the same
stress intensity factor—wherever it is on the x axis. The real
stress intensity factor will be found by relaxing this con-
straint in a similar way as done in �11�.

The piecewise boundary conditions �9�, �10�, �12� moti-
vate a change into a coordinate system on the crack front,
i.e., from �x ,y ,z� to (X�x−h�z� ,y ,z) �8�. We may then
write Eq. �7� as

�1 + h�2�
�2�

�X2 − h�
��

�X
− 2h�

�2�

�z � X
+

�2�

�y2 +
�2�

�z2 = 0,

�14�

where the prime denotes the derivative with respect to z.
Now, we construct an expansion in powers of h, which ac-
counts for the perturbation of the crack front. Without the
loss of generality, we write the expansion in the following
way:

� = 	0 + 		1 + h
�	0

�X

 + 		2 + h

�	1

�X
+

h2

2

�2	0

�X2 
 , �15�

K�z� = K0�z� + K1�z� + K2�z� , �16�

where the subscripts indicate the order of the perturbation
expansion. The advantage of this way of writing the pertur-
bation expansion is that it simplifies the equations for the
zeroth-, first-, and second-order problem. A direct substitu-
tion of the expansion �15� into the equilibrium equation �14�
yields

�2	i

�X2 +
�2	i

�y2 +
�2	i

�z2 = 0, �17�

with i=0,1 ,2. To complete the formulation of the problem,
we need to specify the boundary conditions of each order of
the expansion. These are given by

	i = 0, y = 0, X � 0, �18�

�	0

�y
= p�X,z�,

�	1

�y
=

�	2

�y
= 0, y = 0, X � 0, �19�

�	i

�X
�X,y,z�,

�	i

�y
�X,y,z� → 0, �X2 + y2� → � . �20�

The expansion of Eq. �12� to the second order in h yields

	0�X,0+,z� � −
2K0�z�
�2�

�− X −
4A0�z�
3�2�

�− X�3/2, �21�

	1�X,0+,z� � −
K0�z�h�z�
�− 2�X

−
2K1�z�
�2�

�− X −
4A1�z�
3�2�

�− X�3/2,

�22�

	2�X,0+,z� � −
K0�z�h2�z�

4�2��− X�3/2
−

K1�z�h�z�
�− 2�X

−
2�K2�z� + A1�z�h�z��

�2�
�− X �23�

for X→0−. It is assumed that the perturbation terms induced
by A0�z� as given in Eq. �21� are negligible compared to
those induced by K0�z�. Indeed, dimensional analysis shows
that A0�z��K0�z� /L, where L is the geometrical length scale
induced by the tractions p�x ,z� or by the average length of
the crack plane in the x direction �see Fig. 1�. This length
scale is large compared to the characteristic scale of the per-
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turbation h�z�. Therefore, we will neglect the corresponding
contributions in the following. However, the contribution
proportional to �−X�3/2 of the first order as shown in Eq. �22�
should be taken into account, because it depends on K0�z�
and, thus, contributes to the stress intensity factor term of the
second-order problem.

The zeroth-order problem cannot be solved without speci-
fying the loading p�x ;z�. However, this is not needed for
solving the first- and second-order problems, which will de-
pend on the stress intensity factor K0�z� only. However, if
one takes into account, in the perturbation analysis, the con-
tributions of the parameter A0�z�, the resolution of the zeroth-
order problem becomes necessary �8�. Let us decompose
	i�X ,y ,z� into Fourier modes in the z axis,

	i�X,y,z� =
1

2�
�

−�

�

	̂i�x,y,p�eipzdp , �24�

and use polar coordinates �r ,
� in the �X ,y� plane. The so-

lutions for 	̂1 and 	̂2 are readily given by

	̂1�r,
,p� = −
Ĥ1�p�
�2�r

e−�p�r sin�
/2� , �25�

	̂2�r,
,p� =
L̂2�p�

4�2�r3/2
�1 + �p�r�e−�p�r sin�3
/2�

−
Ĥ2�p�
�2�r

e−�p�r sin�
/2� . �26�

These forms satisfy the bulk equations �17� and the boundary
conditions �18�–�20�. The conditions �22� and �23� are then

satisfied if the functions Ĥ1�p�, Ĥ2�p�, and L̂2�p� are given
by

Ĥ1�p� = �
−�

�

K0�z�h�z�e−ipzdz , �27�

Ĥ2�p� = �
−�

�

K̂1�p��ĥ�p − p��
dp�

2�
, �28�

L̂2�p� = �
−�

�

Ĥ1�p��ĥ�p − p��
dp�

2�
. �29�

Identifying the stress intensity factors at each order as given
by Eqs. �22� and �23� one finds

K̂1�p� = −
1

2
�p�Ĥ1�p� , �30�

K̂2�p� = −
1

16
�

−�

�

�6p�2 + p2 − 4�p� �p���Ĥ1�p��ĥ�p − p��
dp�

2�
.

�31�

Before performing the inverse Fourier transform of these
quantities, let us generalize these results to the case where

the stress intensity factor depends on the location of the
crack front in the x direction.

Until now, we have supposed that the stress intensity fac-
tor does not depend on the mean location of the crack front.
This is not true in general for quasistatic cracks, which
should be at equilibrium, and for which the condition
dK /dL�0 must be satisfied. The decomposition of the per-
turbation follows from Rice’s approach �11,16�. First, we lo-
cate the straight crack front on which the perturbation is
performed at the position �L+h�z��. The stress intensity fac-
tor at the leading order is then given by K0�z ,L+h�z�� and
the location of any point of the curved front is taken with
reference to this position. It is clear that the perturbation
expansion of the stress intensity factor will include contribu-
tions of the form hh�K0, hdK0 /dL, and h2d2K0 /dL2. How-
ever, one should neglect them because the terms induced by
A0�z�, which introduce contributions of the same order, were
already neglected. Therefore, the perturbation expansion
with respect to �h /L� will be at the leading order. Let us
focus on the stress intensity factor KI�z ,L+h�z�� as given by
Eq. �13�, and write

KI�z� = KI0�z� + KI1�z� + KI2�z� + O	h3,
h

L

 , �32�

where the L dependence has been omitted. Therefore, using
Eqs. �13�, �30�, and �31� and performing inverse Fourier
transforms, we find that KI0�z�=K0�z�, and

KI1�z� = PV�
−�

�

K0�z��
h�z�� − h�z�

�z� − z�2

dz�

2�
, �33�

KI2�z� = −
1

8
K0�z�h�2�z� + PV�

−�

� �
−�

�

K0�z��

�
�h�z�� − h�z���h�z�� − h�z��

�z� − z�2�z� − z��2

dz�

2�

dz�

2�
, �34�

Finally, when K0�z� is independent of z, the expansion to the
second order in h and to the leading order in �h /L� of the
mode I stress intensity factor is simplified into

KI�z�
K0

= 1 −
1

8
h�2�z�

+ PV�
−�

� h��z��
z� − z �1 + PV�

−�

� h��z��
z� − z�

dz�

2�dz�

2�
,

�35�

K̂I�p�
K0

= 2���p� −
1

2
�p�ĥ�p� +

1

8
�

−�

�

�2�p� �p��

+ p��p − p���ĥ�p��ĥ�p − p��
dp�

2�
. �36�

Let us emphasize again that for the study of the crack-
front stability, this perturbation expansion is incomplete, be-
cause the �h /L� contributions have been omitted. This state-
ment is true even for a linear stability analysis. An example
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of the importance of such contributions is given by the linear
stability analysis of the peeling-induced crack front in a con-
fined elastic film �8�, where the �h /L� terms do rule the sta-
bility of the crack front. From a conceptual point of view,
these terms are important to keep contact with the experi-
ments �4�, because a quasistatic moving crack front will al-
ways stop �dK /dL�0�, unless the applied force is increased.
Indeed, the experimental realizations for the study of crack-
front roughness use the large length scale L in order to make
the interface moving, by applying an increasing opening in a
cantilever beam configuration. We believe that such effects
are also present in the wetting experiments, where the con-
tact line is displaced by pulling off the substrate. In such
conditions, the roughening of the interface results from a
competition between the microscopic pinning effects and the
destabilizing effects of the macroscopic driving.

We now propose an equation for the motion of a planar
crack in a heterogeneous material. The present approach is
very similar to the one introduced by Gao and Rice �13–15�.
We write the equation of motion for the moving crack front
as a stochastic partial differential equation by using two main
ingredients—the irreversibility of the crack-front propaga-
tion and the nonlinear effects. We refer to h�z� as the fluctu-
ating part of the interface, so that by definition, the real lo-
cation of the interface is given by L+h�z�, and L is its
average. First, we expect a contribution of the form �KI�h�
−Kc�z ,h��, where the perturbative calculations to second or-
der for KI�h� are given above, and Kc�z ,h� is some random
toughness describing the heterogeneity of the material. Then,
the irreversibility of the fracture process implies that the
crack-front motion is possible only at locations of h�z� where
the stress intensity factor is larger than the local toughness
KI�h��Kc�z ,h�. This results in a term like �KI�h�
−Kc�z ,h�� where �·� is the Heaviside function. Finally,
since the crack propagation is locally normal to the interface

�16�, one should include a KPZ-like term of the form
�1+h�2�z�. So a possible form, where the velocity is taken to
be proportional to the difference �KI−Kc� is given by

�h

�t
� �1 + h�2

„KI�h� − Kc�z,h�…�KI − Kc� . �37�

This is a highly nonlinear stochastic partial differential equa-
tion, even if just second-order terms are taken. Clearly, the
presence of the Heaviside function complicates the treat-
ment. In this equation, properties of the noise term need to be
specified, and should be generically described by short-range
correlations.

To summarize, we derived the second-order variation in
the stress intensity factor of a tensile crack with a curved
front propagating in a brittle material. We pointed out that for
linear stability analysis one has to take into account the con-
tributions coming from the large scales, and so the complete
resolution of a given problem must be fully performed for
that purpose. Finally, we proposed an equation of motion of
the planar crack fronts in heterogeneous media that contains
both the irreversibility of the propagation of the crack front
and the nonlinear effects. We suggest that the proposed equa-
tion can be useful in studying the roughening of propagating
crack fronts. In particular, we expect that the nonlocal char-
acter of the nonlinear term �in contrast to the local KPZ
nonlinearity� is likely to change the universality class of the
original equation obtained at first order. Finally, the pertur-
bation method introduced in this study can be generalized
without major difficulties to higher orders.
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